1) analytic gradient
解析梯度
2) analytical energy gradient
解析能量梯度
1.
The functions to generate symmetrical group orbitals by our new method and to
implement the evaluation of analytical energy gradients as well as its use in
automatic geometry optimization are also incorporated.
在已有的高精度非相对论密度泛函理论计算程序中编入新的方法进行近似相对论密度泛函计算、产生对称性群轨道和实现解析能量梯度计算及几何构型自动优化功能的程序。
3) Analysis of the Stairs
楼梯解析
4) decomposition ratio gradient
分解梯度
1.
Continuous carbonation decomposition (CCD) is one of the key procedures in
sintering process of alumina production, its decomposition ratio gradient and
the last-tank decomposition ratio directly affect the quality and yield of
products.
连续碳酸化分解(简称连续碳分)过程是烧结法生产氧化铝的关键工序之一,其分解梯度与末槽分解率直接影响产品的产量和质量。
5) gradient desorption
梯度解吸
1.
A set of technology about resin adsorption and gradient desorption was
established.
建立了一套树脂吸附和梯度解吸工艺。
6) Gradient analysis
梯度分析
1.
A gradient analysis based on the buffer zones of urban landscape pattern of the
constructed area in Guigang City,Guangxi,China;
基于缓冲带的贵港市城市景观格局梯度分析
2.
Spatio-temporal gradient analysis of urban green space in Ji′nan City;
济南市城市绿地时空梯度分析
3.
Extent effect of landscape gradient analysis of urban-rural transect;
城乡样带景观梯度分析的幅度效应
补充资料:能量原理与能量法
能量原理与能量法
energy principles and energy methods
nengliang yuanli yu nengliangfa能量原理与能量法(energy prineiple、and energy
methods)根据能量来分析结构在外来作用下的反应的力学原理和方法。能量原理是力学中的机械能守恒定律或虚功原理在变形固体力学中的具体体现,它是能量法的理论基础,也是用能量法解题时必须满足的条件。这些条件是与平衡条件或位移协调条件等价的。能量原理和能量法与先进的计算技术相结合,显示出优越性。
应变能、余能和势能在单向应力状态下,弹性体的应变能密度(单位体积的应变能)怂可用一下式计算:
,‘一站O。凌它相当于图l中用阴影线表示的面积。另外,在单向应力状态下的余能(应力能)密度万可用下式计算: 万一俨:
而它相当于图2中阴影部分的面积。由图1.21;r知 2,+万=JO‘’)。‘。~J茸祥一言一一£ d£
图J应变能密度图2余能密度图3线弹性情尤下的应变能密度与余能密度由图3可知,线弹性体的余能密度与应变能密度在数值上相等。在简单应力状态下的应变能密度或余能密度经过总加后,可得到复杂应力状态下的应变能密度或余能密度。把它们在整个弹性体的体积内积分就得出整个弹性体的应变能或余能。对于线弹性体,应变能或余能可表示为位移或应力
(内力)的二次式。弹性体的应变能与外力势能的总和称为总势能。外力势能在数值上等于各个外力在施力点位移上所做功的总和冠以负号。
能量原理在给定的外力作用下,在满足位移边界条件的所有各组位移中.实际存在的一组位移应使总势能为极值。对于稳定平衡状态,这个极值是极小值。因此,上述能量原理称为极小势能原理。它等价于平衡条件
(含应力边界条件)。在满足平衡条件(含应力边界条件)的所有各组应力
(内力)中,实际存在的一组应力‘内力)应使弹性体的余能为极值。对于稳定平衡状态,这个极值是极小值。因此,这个能量原理称为极小余能原理。它等价于位移协调条件。
上述两个能量原理实际上就是数学中求泛函极值的变分原理,应变能和余能分别是以位移或应力
(内力夕为自变函数的泛函。所以能量原理也称变分原理,是工程力学的电要组成部分。在变分原理中,位移的变分就是虚位移,应力(内力)的变分就是虚应力
(虚力)。因此,能量原理中的极小势能原理又相当于虚位移原理,极小余能原理又相当于虚应力(虚力)原理。