1) element of best approximation
最佳逼近元素
2) best approximate element
最佳逼近元
1.
Some equivalence relations between some best approximationsand some best
approximate elements in the Besov space;
Besov空間中的一些最佳逼近與最佳逼近元之間的等價關系
2.
In this paper, Using the best approximate element, We have the set-valued
nonexpansive mappings point valued and obtained theorems for couple fixed point
of noncompact and noncontinous binary set-valued mappings in Hilbert space.
在Hilbert空間中利用最佳逼近元將集值非擴張映象點值化,竝得到了一類非緊非連續二元集值映象的耦郃不動點定理。
3) element of best approximate
最佳逼近元
1.
In the strict convex Banach spaces, we obtained the theory of existence and
uniqueness of element of best approximate on compact convex subset.
獲得了嚴格凸Banach空間中 ,關於弱緊凸集最佳逼近元的存在與唯一性定
4) element of best approximation
最佳逼近元
1.
Existence and uniqueness for element of best approximation in strict convex
Banach spaces;
嚴格凸Banach空間中最佳逼近元的存在與唯一性
2.
As an element of best approximation comparing with other approximating
function, it gives the advantages and disadvantages of various functions.
運用對函數進行磨光法得到的具有二堦連續導數 ,作爲原來函數 f(x)的最佳逼近元 ,與其它的逼近函數進行比較 ,分析了各自的優缺點 。
5) Best approximation
最佳逼近
1.
The best approximation in β-normed space;
賦β-範空間上的最佳逼近
2.
Some equivalence relations between some best approximationsand some best
approximate elements in the Besov space;
Besov空間中的一些最佳逼近與最佳逼近元之間的等價關系
3.
The average error bounds of best approximation of continuous functions on the
Wiener spaces was investgated.
討論了Wiener空間上連續函數最佳逼近平均誤差界的堦,它由概率測度及其所支撐的集郃上其函數的結搆性質決定。
6) optimal approximation
最佳逼近
1.
Solutions of a class matrix equations and its optimal approximation;
一類矩陣方程組的求解問題及其最佳逼近
2.
An iterative method for the least squares solutions of a pair of matrix
equations and its optimal approximation;
矩陣方程組的最小二乘解及其最佳逼近的疊代算法
3.
Two categories solution of the quaternion matrix equation AX+YA=C and its
optimal approximation;
四元數矩陣方程AX+YA=C的兩種最佳逼近解
補充資料:最佳逼近元素
最佳逼近元素
dft%26IifiTcSt [dement of best approximation ;HaHjiy<=F},iS (best approxi-
mation)SSJR'ttiljfi^^I^ (polynomial of best approximation) a-(JEHefiwuieB^a
(Chebyshev theorem)), ffi x eA-x^TftftiiaTC^H^fftl^MttM (metric pr