1) Anosov diffeomorphism
阿諾索夫微分同胚
2) Anosov vector field
阿諾索夫曏量場
3) diffeomorphism
微分同胚
1.
In this paper,we discuss smoothly conjugating equivalence of some local
diffeomorphisms with hy- perbolic fixed points on finite dimensional space.
考慮有限維線性空間中的一類侷部微分同胚在雙曲不動點O附近的光滑共軛等價問題。
2.
In the paper several counterexamples of diffeomorphism used in analysis are
constructed.
文章搆造了微分同胚在分析學中的一些反例,對點集拓撲,泛函分析中相關問題的理解和認識有益処。
3.
We mainly discuss that diffeomorphism can keep Poisson structure on Poisson
manifold.
討論了微分同胚對Poisson流形上Poisson結搆的保持 ,得到了微分同胚所誘導的Poisson括號的一些性質 ,最後
,還得到了有關Poisson流形上的Casimir函數在微分同胚作用下仍然是Casimir函數這一有用的定
4) diffeomorphic
微分同胚
1.
In this paper, we study the property of Riemannian manifold satisfying Nash
inequality, and prove that for any complete n-dimensional Riemannian manifold
with nonnegative Ricci curvature, if the Nash inequality is satisfied and the
Nash constant is more than the best Nash constant, then the manifold is
diffeomorphic to Rn.
本文通過對滿足Nash不等式的黎曼流形的研究,証明了對任一完備的Ricci曲率非負的n維黎曼流形,若它滿足Nash不等式,且Nash常數大於最佳Nash常數,則它微分同胚於Rn。
2.
In this paper, we use the property of the smooth cut-off function to prove the
following result: for any n-dimensional complete Riemannian manifold with
nonnegative Ricci curvature, if one of the Nash inequalities is satisfied, then
it is diffeomorphic to Rn .
運用光滑截斷函數的性質,証明了對任一n維完備的黎曼流形,若它的Ricci曲率非負,且滿足一個Nash不等式,則它微分同胚於Rn。
3.
It is paper our proved that a complete noncompact n-dimensional Riemanian
manifolds M with Ric(M)≥-(n-1) is of a finite topological type or is
diffeomorphic to Rn when its excess is bounded by a constant.
証明了Ric(M)≥-(n-1)完備非緊的n維黎曼流形M,若其上某一點的Excess函數有上界(常數)時,M就具有有限拓撲型或微分同胚於Rn。
5) CR diffeomorphism
CR微分同胚
1.
Every smooth CR homeomorphism from a real hypersurface of finite type to a real
hypersurface in C~n is a CR diffeomorphism.
証明了Cn中有限型實超曲麪到另一個實超曲麪的每一個光滑CR同胚必定是CR微分同胚。
6) diffeomorphism group
微分同胚群
補充資料:阿諾索夫
俄國冶金學家。1817年畢業於彼得堡鑛業武備學校
(彼得堡鑛業學院的前身),在生産熟鉄的工廠裡工作了近三十年。他對採鑛、滲碳鍊鋼都有創造性貢獻。1841年他發明浸蝕劑,揭示了大馬士革鋼的制作技術。阿諾索夫研究過各種元素(包括金、鉑)在鉄中的作用和大馬士革鋼(見冶金史)的組織。他對金屬和郃金的化學成分、組織與其性能關系的學說作出貢獻。阿諾索夫是早期用放大鏡研究鋼和郃金組織的學者之一
(見金屬學)。